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Abstract—The concept of a beam or slab on an elastic foundation has been one of the convenient
tools for obtaining solutions to several geotechnical .engineering problems. While it is easy to
establish quite accurately the stiffness characteristics of the beam or the slab. the parameters which
govern the behavior of the subsoil or the elastic foundation are indeed hard to model. This difficulty
temains true even if one assumes that the soil has linear. isotropic. and homogeneous properties.
Using the Vlasov model. Vallabhan and Das (1988, J. Engng Mech. Div., ASCE 114(2), 2072~
2082) have developed an effective iterative technique to solve the becam-on-elastic-foundation
problem where the soil is assumed to have a uniform depth with a rigid base at the bottom.
Geotechnical engineers usually encounter subsoil of finite depth, and normally the elastic propertics
are considered to remain constant or vary lincarly with depth. In this paper. the authors have
extended their model to incorporate numerically this physical characteristic of the soil, Even though
the derivations may look laborious, the numerical model s quite simple and can be programmed
on a desktop computer.

INTRODUCTION

Many geotechnical engineers use the Winkler model (1867) for the analysis of beams on
clastic foundations, where the vertical deformation characteristics of the clastic foundation
are characterized by means of continuous, closely spaced lincar springs ; the constant of
proportionality of these springs is known as the “modulus of subgrade reaction™ (Terzaghi,
1955). and is usually represented by £. The Winkler model has been shown to be inconsistent
to represent a continuous medium (see Pasternak, 1954 ; Viasov and Leont'ev, 1966 ; and
recently Nogami and Lam, 1987). Vlasov developed a two-parameter model in which he
introduced an arbitrary parameter, y, to characterize the distribution of displacements in
the vertical direction in the clastic foundation. Jones and Xenophontos (1977), using the
variational principle, strengthened the Viasov model by establishing a relationship between
the y-parameter and the displacement of the beam or the slab on the top. Vallabhan and
Das (1988) developed an iterative procedure to uniquely determine the y-parameter. The
two Vlasov parameters and the y-parameter are interdependent of one another and unique
for a given problem of beam or slab on elastic foundation.

In this paper, the authors consider an clastic foundation of finite depth on a rigid base
and assume the elastic properties of the layer to vary lincarly with depth. Here, one should
be reminded that the clastic foundation is assumed to be a plane strain problem; in other
words, mathematically the model is for solving a plane strain problem of a slab on a finite
layer of elastic continuum with lincarly varying elastic modulus.

WHY A NEW MODEL?

In spite of its conceptual elegance, the Vlasov model has not been used by many
practicing engineers, even though it was developed as early as 1966. The authors presume
the following four maujor reasons to account for the lack of acceptance of the Viasov model
in engincering design. The first reason relates to the difficultics in the estimation of the value
of the y-parameter which defincs the decay of the vertical displacement in the subsoil. The
sccond reason is that the exact solutions of the Vlasov equations are rather complex and
difficult to achieve ; a proper numerical procedure has to be employed. The third reason is
that the soil propertics need not be uniform for the entire depth ; in many instances, they
vary with depth. The fourth reason, according to the authors. is the non-availability of the
comparison of the solution of the Vlasov model with other more exact solutions. Vallabhan
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er al. (1987). using the finite difference technique combined with an iterative procedure,
removed the above limitations. Also. Vallabhan and Das (1987) extended this concept to
a “‘matrix foundation model™ whereby the accuracy of their model was turther improved.
Some of the observations from fellow researchers on these models were attributed to the
practicality of these concepts to solve real geotechnical problems. One of the primary
suggestions was directed to the nature of the soil layers and their variations in elastic
properties with depth. According to the authors, such realistic situations can be approxi-
mated. in many instances, by assuming linear variations of clastic properties with depth.
The incorporation of this linear variation into the three models is the theme of this paper.

VLASOV MODEL

In order to recapitulate, a brief account of the Vlasov model is given below. The subsoil
is assumed to have uniform depth with linearly varying elastic modulus resting on a stiff
soil layer or bedrock. The derivations are made for the case of a long slab of finite width
resting on the elastic foundation. thus assuming plane strain conditions for the soil as shown
in Fig. [. A strip of the slab (of width b in the y-direction) is assumed as a beam. The
potential energy function is given by

(A 2.=\2 [7 4 H L
= f g’_;[f ((-j—j‘-> dx+ 5 j f (. +0.6.+7,.T.)dz d.v—j glow(xydx (1)
[} —- W J0 0

) - d.\'2

where E, 1, = flexural stiffness of the beam, L = length of the beam, H.b = height and
width of the soil model, a,, 6., t.. = components of stress at a point in the soil, and ¢, ¢..
7. = corresponding strains in the soil. Assumptions:

1. The vertical displacement w(x, ) is expressed as w(v,2) = w(x) $(2), such that

G0y =1 and ¢(H) = 0.

The horizontal displacement u(x, 2) is assumed to be zero everywhere in the soil

medium,

3. Compatibility of vertical displacements at the soil -beam interfuce alone is assumed
to be of importance.

9

Minimizing the function IT with respect to w, we get, for the beam 0 < x < L, the following
equation:

d? d*w d*w
- s e e - - 2
dy? (E"'” d.ﬁ) 2 g2 TRE =4 (2)

with the usual boundary conditions for the conventional Euler beam. [n the above equation,
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Fig. . Beam on elastic foundation (Vlasov model).
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Here E, and E, represent the modulus of elasticity of the top and bottom of the soil stratum
respectively. It can be shown (Vallabhan and Das, 1987) that in this model the boundary
shear forces are:

Q0) = —/2ktw(0)
and
QL) = - /2ktw(L) respectively. &)

Minimizing the function IT with respect to ¢ and with further algebraic simplifications, it
can be shown (Vallabhan and Das, 1988) that

sinh y(l - ;’)
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where
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It is to be noted that y herein is a dimensionless parameter, whereas Vlasov used a dimension
of length ', Using the expression for ¢(=), one can derive new expressions for k and 2¢,
namely

‘o b(1—=v) [E.(‘Zy sinh 2y +4y%) + (E; — E,)(cosh 2y — 1 +2y?) 8
T 8H(1+v)(1=2v) sinh?y (
5o bH [E.(?.y sinh 2y —4y?) + (E. — E,)(cosh 2y — 1 —27?) ©

T 16 (14 v) sinh?y : )
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DETERMINATION OF y PARAMETER

Expanding eqn (7). it is shown that

L AWy 1 [k, .2
(7 )2 (1= J:) (a;) dx+§\/;;[“ (0)+w=(L)]
7{' = .

XX1-v) L
J‘ Wi (x)dx+ ;\E (3 (0) +wi(L)]
3 -
Assuming an approximate value of y initially, the values of & and 2r are evaluated using
eqns (8) and (9). From the solution of the deflection of the beam, a new value of 7 is
computed using eqn (10). This new value of y is again used to compute new values of k and
2¢. The procedure is repeated until two successive values of y are approximately equal.

(10)

FINITE DIFFERENCE MODEL

The classical finite difference method is employed to solve the differential equation
given in egn (2). Matlock and Reese (1960) used a similar approach to obtain solutions for
laterally loaded pile foundation problems. By using the central difference operator, for an
interior node ¢ within the domain, the following equation is obtained

IJ
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in which /i = L/N, and N is the number of s¢gments used in the finite difference model.
Here the node i has to be within two nodes of the end nodes. For the nodes close to the
boundiry on cither end, the equations need modifications to contain the boundary con-
ditions at the ends. For convenience, the equations are derived for the right-hand side end
of the beam. By incorporating the boundary conditions into the field equation, the finite
difference equations at stations n— 1 and # are obtained as given below:
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M, and §, are the prescribed values of the bending moments and shear forces at the end
of the beam. Now similar equations can be derived for the end at the left-hand side also.
Since the final algebraic equation can be represented by an equidiagonal matrix equation,
a recursive method is employed to obtain the solution.

A very simple computer program has been developed. The input data consist of beam
propertics such as dimensions and E,. and the soil properties such as E,, E., v. and H
respectively. The program internally calculates soil parameters y, &, and 2, using an iterative
technique.
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NUMERICAL EXAMPLES

Since the authors (Vallabhan and Das, 1987, 1988) have compared their solutions
with more sophisticated numerical solutions and have indicated good correlations, similar
exercises are not attempted here. Alternatively, two sets of problems of practical significance
are solved. In the first one, the beam carries a uniformly distributed load ; in the second,
the beam has a concentrated load at the center. These problems have been solved for various
values of the depth of the soil and a parameter M (= E,/E,) which identifies the ratio of
the moduli at the bottom to that at the top of the soil layer. The dimensions of the beam
and the loading characteristics are kept constant in order to illustrate some meaningful
comparisons. The main purpose of these exercises is to demonstrate the versatility of
the technique to solve beam-on-elastic-foundation problems, without having the need to
establish a value of k. Besides. in the authors’ opinion, there is no such deterministic soil
property as k. No doubt the profession continues to use it; but it needs to be emphasized
that it is erroneous to do so. The dimensions and properties of the beam and the soil are
assumed as follows: length of the beam (L) = 100 ft (30.48 m), width of the beam (4) =
1 ft (0.3048 m). depth of the beam (d) = 3 ft (0.9144 m). modulus of elasticity of the beam
(E,) = 432,000 ksf (20.68 GPa), modulus of elasticity of the soil at the top (E, = 500 ksf
(23.94 MPa), and Poisson’s ratio of the soil layer (v) = 0.2.

The above properties remain the same for all problems solved in this paper. The values
of the depth of the soil layer, H. have been taken as 25, 50, and 100 ft, and the values of
M are varied as 1, 2, 5, 10, and 20, for each value of depth.

Uniformly distributed load case

The uniformly distributed load ¢ is assumed to be equal to 2 K ft~! (2.71 kN m™"),
There are 15 problems ; cach of them is solved independently. The non-dimensional par-
amcters given by the ratio H/L and M = (E,/E)) are the most significant paramcters which
control the solution here. Other parameters defining the stiffness ratio of the beam and the
soil, cte., are also known to be mujor parameters which control the overall solution;
however, here, it is intended to show the effects on the solution due to changes in soil
geometry and properties. For convenience of the reader, the values obtained for y, &, and
2t are shown in Table 1 for various H/L values of M ratios. Since the displacements and
their patterns are of importance to the analyst, they are also illustrated in Figs 2, 3, and 4
respectively, Here the values of displacements are multiphied by a fuctor (1 4+ M)/2. In other
words, the actual displacements are to be divided by (1 + M)/2, which means that for values
of M > |, the displacements are less.

Table 1. Values of 3, &, and 2¢ parameters (for a uniformly distributed load =
IR L =100, EJE, = M, E, = 500 ksf, E,[, = 972,000 kft*)

Soil depth HilL k u
H () rittio M=EE, y-parameter (ksf) (K)

25 0.25 { 0.377 2.2 1704

2 0.390 33.1 2122

5 0.407 65.5 3319

10 0.417 1194 6471

0 0.424 2273 9655

50 0.50 I 0.578 (F N 3328

2 0.597 16.4 4125

5 0.622 2.0 6522

10 0.637 58.0 10511

20 0.650 109.9 18476

100 1.00 l 0.883 5.6 6296

2 0.919 8.1 1726

5 0.966 15.3 11999

10 0.993 272 19111

20 1.012 5t.0 333
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Fig. 2. Beam displacement (H'L = 0.25).
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Fig. 3. Beam displacement (#: L = 0.5).

The second case deals with a concentrated load, P = 30 K (133.44 kN), applied at the
center of the beam. As in the previous case, there are 15 problems here also. The results
containing the variations in the values of ;. k, and 2¢ for different #/L and M ratios are
shown in Table 2. Also, the variations of displacements for different H/L ratios are given
in Figs 5, 6, and 7 respectively. As before. the values of displacements are multiplied by a
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Fig. 4. Beam displacement (H/L = 1.0).

DISCUSSION

The variability of three soil parameters such as y, &, and 2¢ for different H/L and M
ratios is illustrated in Tables | and 2. The overall attempt here is to illustrate that beam-
on-clastic-foundation problems, where the material properties of the soil layer varics with
depth, can be solved numerically by a simple procedure. The conventional technique of
establishing a unique numerical value of & for the soil has to be examined carefully, because
the value of & varies depending on the overall gecometry of the problem and the stiffness
ratios of the beam and the soil, cle. Also, for the Winkler model, the displacements are
uniform for the case of a uniformly distributed load ; in other words, there is no bending
moment or shear foree in the beam. This phenomenon is contrary to what one gets from
using other models.

Many engincers hold the view that the establishment of values for E,, E, and E for
the soil stratum is as complex as establishing a value of & for the soil. The authors take a
different opinion that the parameter £ is conceptually good and that the values can be
effectively measured for a soil stratum by means of in situ pressure-meter tests or laboratory
unconfined and triaxial compression tests. In the case of normally consolidated claying
soils, the values of elastic modulus can be less meaningful from a practical point of view,
and in such instances a drained modulus may be used so as to obtain time-dependent

Table 2. Values of y. &, and 2¢ parameters (for concentrated load at the center =
0K L =100, EJE, = M, E, = 500 ksf, E,1, = 972,000 kft’)

Soil depth H L k 2t
H (V) ratio M= EJE,  y-parameter (ksh) (K)

25 0.25 1 0.610 223 1654

2 0.657 327 2041

5 0.755 63.0 3169

10 0.862 1 4969

20 0.992 205.0 83

50 0.50 I 0.94 11.2 3109

2 1.014 16.1 3773

5 1.150 29.8 5675

10 1.285 51.4 8636

20 1.444 92.1 14100

100 1.00 1 1.345 59 5615

2 1.447 8.0 6652

5 1.623 14.1 9578

10 1.781 23.6 14077

20 1.957 41.3 22288
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Fig. 5. Beam displacement (H/L = 0.25).
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Fig. 6. Beam displacement (H/L = 0.5).

scttlements. Here, great caution has to be exercised in the interpretation of the results. In
general, evaluations of the deformation characteristics of a soil medium are indeed very
important in geotechnical engineering practice, especially when they can be achieved in a
design office using a personal computer.

Since the method is iterative, one may be concerned about the convergence of the y
parameter. It is observed that convergence to a margin value of y is achieved for less than
seven iterations for uniformly distributed loads and less than 12 iterations for concentrated
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Fig. 7. Beam displaccment (£/L = 1.0).

loads. A starting value equal to 1.0 is used here. In the author’s opinion, this model clarifics
a lot of inconsistencies prevailing in the use of modulus of subgrade reaction & in the widely
used Winkler model. The method presented here can be expanded to consider layered soils,
variations in depth of soil, etc.
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