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Abstract-The concept of a beam or slab on an elastic foundation has been one of the convenient
toots for obtaining solutions to several geotechnical.engineering problems. While it is easy to
establish quite accurately the stiffness characteristics of the beam or the slab. the parameters which
govern the behavior of the subsoil or the elastic foundation are indeed hard to model. This difficulty
remains true even if one assumes that the soil has linear. isotropic. and homogeneous prop\=rties.
Using the Vlasov model. Vallabhan and Oas (1988. J. £"gn9 J/..ch. Dil· .. ASC£ 114(2). 2072­
20821 have developed an effective iterative technique to solve the bcam·on·e1astic·foundation
problem where the soil is assumed to have a uniform depth with a rigid base at the bottom.
Geot~"l:hnicalengineers usually encounter subsoil of finite depth. and normally the elastic properties
arc C<1nsidered to remain constant or vary linearly with depth. In this paper. the authors have
e:'ltended their model to incorporate numerically this physical characteristic of the soil. Even though
the derivations milY look laborious. the numerical model is quite simple and can be progrillllmcd
I," a desktllp computer.

INTRODUCTION

Many geotechnical engineers use the Winkler model (I !l67) for the analysis of beams on
elastic foundations. where the vertical deformation characterislics of the e1aslic foundation
are characterized by means of continuous. closely spaced linear springs; lhe conslanl of
proporlionalily of these springs is known as lhe "modulus of subgrade reaclion" (Terzaghi.
1955). and is usually represented by k. The Winkler model has been shown to be inconsislent
to represent a continuous medium (see Pastcrnak. 1954; Vlasov ,lI1d LeonCev. 1966; and
recenlly Nogami ,lI1d Lam. 1987). Vlasov developed a two-parameter model in which he
introduced an arbilrary parameter. ,. to characterize lhe distribution of displacements in
lhe verlkal direction in the clastic foundation. Jones and Xenophontos (1977). using lhe
variational principle. strengthened the Vlasov model by establishing a relalionship between
the }"parameter and the displacement of the beam or the slab on the lop. Vallabhan and
Das (1988) developed an iterative procedure to uniquely determine lhe I-parameter. The
two Vlasov parameters and the ,-parameter arc interdependent of one .1I10ther and unique
for a given problem of beam or slab on elastic foundation.

In lhis paper. the authors consider an clastic foundation of tinite depth on a rigid base
and assume the clastic properties of the layer to vary linearly with depth. Here. one should
be reminded that the elastic foundation is assumed to be a plane strain problem; in other
words. malhematically the model is for solving a plane strain problem of a slab on a tinite
1.lyer of elastic continuum with linearly varying clastic modulus.

WHY A NEW MODEL'!

In spite of its conceptual elegance. the Vlasov model has not been used by many
practicing engineers. even though it was developed as early as 1966. The authors presume
the following four major reasons to account for the lack of acceptance of the Vlasov model
in engineering design. The first reason relates to the difficulties in the estimation of the value
of the i'-parameter which defines the decay of the vertical displacement in the subsoil. The
second reason is that the exact solutions of the Vlasov equations arc rather complex and
ditlicult to achieve; a proper numerical procedure has to be employed. The third reason is
that the soil properties need not be uniform for the entire depth; in many instances. they
vary with depth. The fourth reason. according to the authors. is the non-availability of the
comparison of the solution of the Vlasov model with other more exact solutions. Vallabhan
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et al. (1987), using the finite difference technique combined with an iterative procedure,
remo....ed the above limitations. Also, Vallabhan and Das (1987) extended this concept to
a "matrix foundation model" whereby the accuracy of their model was further improved.
Some of the observations from fellow researchers on these models were attributed to the
practicality of these concepts to solve real geotechnical problems. One of the primary
suggestions was directed to the nature of the soil layers and their variations in elastic
properties with depth. According to the authors, such realistic situations can be approxi­
mated. in many instances, by assuming linear variations of elastic properties with depth.
The incorporation of this linear variation into the three models is the theme of this paper.

VLASOV MODEL

In order to recapitulate, a briefaccount of the Vlasov model is given below. The subsoil
is assumed to have uniform depth with linearly varying elastic modulus resting on a stitT
soil layer or bedrock. The derivations are made for the case of a long slab of finite width
resting on the elastic foundation, thus assuming plane strain conditions for the soil as shown
in Fig. I. A strip of the slab (of width b in the y-direction) is assumed as a beam. The
potential energy function is given by

(I)

where E~l~ = flexural stitTness of the heam. L = length of the beam, H, h = height and
width of the soil model. n .. n:, r ,: = components of stress at a point in the soil, and 1:,. I::,

}'t: = corresponding strains in the soil. Assumptions:

I. The vertical displacement li'C\,,:) is expressed .IS li·(.\".:) = Ir(.\')' (M:). such that
(jJ(O) = I and (p(ll) = O.

'l The horizontal displacement u(.\',:) is assumed to be zero everywhere in the soil
medi lim.

3. Compatibility of vertical displacements at the soil beam interl~ll:e alone is assumed
to be of importanl:e.

Minimizing the funl:tion n with respect to II', we get, for the beam 0 < x < L, the following
e4uation:

(2)

with the usual boundary conditions for the conventional Euler beam. In the above e4uation.

w(H)=O

H z

w _
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(E, ,r,)

RIGID BASE

Fig. I. Beam on elastic foundation (Vlasov model).
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(3)

(4)

Here E I and E2 represent the modulus ofelasticity of the top and bottom of the soil stratum
respectively. It can be shown (Vallabhan and Das, 1987) that in this model the boundary
shear forces are:

Q(O) = - j2k1.,·(O)

and

Q(L) =- j2k1.j'(L) respl.'Ctively. (5)

Minimizing the function n with respect to 4J and with further algebraic simplifications. it
c<ln be shown (Vallabh.m and Oas, 1988) that

where

f'" (d~,)2

(1.)2 = t-2v _~ dX dx

H 2(t-v) f'" w2 dx
-~

(6)

(7)

It is to be noted that '/ herein is a dimensionless parameter, whereas Vlasov used a dimension
of length - '. Using the expression for tP(:), one can derive new expressions for k and 2/,
namely

k = h( I - v) [EI (21 sinh 21+41
2) + (£2 - £. )(cosh 21-1 + 21

2)]
8H(I+v)(I-2v) sinh2

1

2 = bH [E1(2,/ sinh 2y-4y2)+(E2 -£,)(cosh 2y-t-2/ 2
)]

1 16,.2(1 +v) sinh2 "1 •

(8)

(9)
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DETERMINATION OF 'I PARAMETER

Expanding eqn (7). it is shown that

(10)

Assuming an approximate value of y initially. the values of k and Zt are evaluated using
eqns (8) and (9). From the solution of the deflection of the beam. a new value of y is
computed using eqn (10). This new value of y is again used to compute new values of k and
2t. The procedure is repeated until two successive values of yare approximately equal.

FINITE DIFFERENCE MODEL

The c1'lssical finite difference method is employed to solve the differential equation
given in I.'qn (2). Matlock and Reese (1960) used a similar approach to obtain solutions for
l'lterally loaded pile foundation problems. By using the central difference operator. for an
interior node i within the domain. the following equation is obtained:

where

(II)

in whidl It = L/N. and N is the number of segments used in the finite dilference model.
Here the node i h.ls to be within two nodes of the end nodes. For the nodes close to the
bound.try on either end. the equations need modifications to contain the boundary con­
ditions at the ends. For convenience, the equations arc derived for the right-hand side end
of the beam. By incorporating the boundary conditions into the field equation. the finite
dilli:rem:e equations .. t stations 1/- I and 1/ are obtained as given below:

at node 1/- I.

and at node 11.

( 13)

Ain.lnd Qn are the prescribed values of the bending moments and shear forces at the end
of the beam. Now similar equations can be derived for the end at the left-hand side also.
Since the timll algebraic equation can be represented by an equidiagonal matrix equation.
a recursive method is employed to obtain the solution.

A very simple computer program has been developed. The input data consist of beam
properties such as dimensions and E". and the soil properties such as E l • E~. \'. and H
respectively. The program internally calculates soil parameters "/. k. and 2t. using an iterative
technique.
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NUMERICAL EXAMPLES

Since the authors (Vallabhan and Das. 1987. 1988) have compared their solutions
with more sophisticated numerical solutions and have indicated good correlations. similar
exercises are not attempted here. Alternatively. two sets ofproblems ofpractical significance
are solved. [n the first one. the beam carries a uniformly distributed load; in the second.
the beam has a concentrated load at the center. These problems have been solved for various
values of the depth of the soil and a parameter !vi (= E ~/E \) which identifies the ratio of
the moduli at the bottom to that at the top of the soillayer. The dimensions of the beam
and the loading characteristics are kept constant in order to illustrate some meaningful
comparisons. The main purpose of these exercises is to demonstrate the versatility of
the technique to solve beam-on-elastic-foundation problems. without having the need to
establish a value of k. Besides. in the authors' opinion. there is no such deterministic soil
property as k. No doubt the profession continues to use it; but it needs to be emphasized
that it is erroneous to do so. The dimensions and properties of the beam and the soil are
assumed as follows: length of the beam (L) = 100 ft (30.48 01). width of the beam (b) =
I ft (0.3048 01). depth of the beam (el) = 3 ft (0.9144 01). modulus of elasticity of the beam
(Eh ) = 432.000 ksf (20.68 GPa). modulus of elasticity of the soil at the top (E I = 500 ksf
(23.94 MPa). and Poisson's ratio of the soil layer (\.) = 0.2.

The above properties remain the same for all problems solved in this paper. The values
of the depth of the soil layer. fl. have been taken as 25. 50. and 100 ft. and the values of
At arc varied as I. 2. 5. 10. and 20. for each value of depth.

UI/iform/y distrihuted/oad cas!'
The uniformly distributed load Cf is assumed to be equal to 2 K ft -I (2.71 kN m -I).

There are 15 problems; each of them is solved independently. The non-dimensional par­
ameters given by the ratio 1/1 L .and M = (E!/ Ed arc the most significant parameters which
control the solution here. Other parameters defining the stilrness ratio of the beam and the
soil. etc .. are also known to be major parameters which control the overall solution;
however. here. it is intended to show the ellccts 011 the solution due to changcs in soil
geometry and properties. For convenience of the reader. the values obtained for y. k. and
2t .Ire shown in Table I for various 1//L values of M ratios. Since thc displaccments and
their patterns are of importancc to the analyst. they are also illustratcd in Figs 2. 3. and 4
respectively. Hen: the valucs of displacements arc multiplicd by a factor (I + M)/2. [n other
words. the .lctu.11 displ'lcements arc to be divided by (I + M)/2. which means that for values
or M > I. the displacements are less.

Tahle I. Values of )'. k. and 2/ paramelers (for a uniformly dislribuled load ==
2 K'f; L == IOU n. £,/£, == ,\". £, == 500 ksf. £.'. == 972.000 kfl')

Suil deplh 1f;1. k 2/
If (n) ratiu .\1 ~ 1::,/£, )'-paramcler (ksf) (K)

25 0.25 1 0.377 11.2 1704
2 O.39U 33.1 2122
5 0,407 65,5 3379

IU 0.417 119,4 6471
20 0.424 227.3 9655

50 0.50 I 0.57!! 11.1 3325
2 0.597 16.4 4125
5 0.622 32.0 6522

10 0.637 58.0 10511
20 0.650 109.9 18476

100 1.00 I 0.883 5,6 6296
2 0.919 8.1 7726
5 0.966 15.3 11999

10 0.993 27.2 19111
20 1.012 51.0 33311
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H/L=0.25

M= E2 /E,

Fig. 2. Beam displacement (H'L = 0.25).
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Fig. 3. Beam displacement (II,L = 0.5).

Cmu'e1llraled load case
The second case deals with a concentrated load. P = 30 K (133.44 kN), applied at the

center of the beam. As in the previous case. there are 15 problems here also. The results
containing the variations in the values of j', k, and 21 for different HILand M ratios are
shown in Table 2. Also, the variations of displacements for different HIL ratios are given
in Figs 5. 6. and 7 respectively. As before. the values of displacements are multiplied by a
factor (I + M)/2.
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DISCUSSION

The variability of three soil pammeters such as y. k. and 2t for different HILand M
mtios is illustmtt:d in Tahles I and 2. The overall attempt here is to illustrate that beam­
on-clastic-foundation problems. where the material properties of the soil I.lyer varies with
depth. can be solved numerically by a simple procedure. The conventional technique of
estahlishing a unique numerical value of k for the soil has to be examined carefully. because
the value of k varies depending on the overall geometry of the problem and the stilfness
mtios of the beam and the soil. etc. Also. for the Winkler model. the displacements arc
uniform for the case of a uniformly distributed load; in other words. there is no bending
moment or shear force in the beam. This phenomenon is contmry to what one gets from
using other models.

Many engineers hold the view that the establishment of valucs for £ •. £2 and £ for
the soil stmtum is as complcx as establishing a valuc of k for the soil. The authors take a
diffcrcnt opinion that thc paramcter £ is conceptually good and that the values can be
clfectively measured for a soil stratum by means of in situ pressure-meter tests or laboratory
unconlined and triaxial compression tests. In the case of normally consolidated claying
soils. the values of clastic modulus can be less meaningful from a practical point of view.
and in such instances a drained modulus may be ~sed so as to obtain time-dependent

Table 2. Values of ,. k. and 2/ parameters (for coneentrat~'<! load at the center =
30 K; L = 100 ft. £:/£, = M. £, = 500 ksf. £./. = 912.000 kft:)

Soil depth lI;L k 2/
/I (ft) ratio M = £:/£, )',pilfameter (ksf) (K)

25 0.25 I 0.610 22.3 1654
2 0.657 32.7 2041
5 0.755 63.0 3169

10 0.1l62 111.7 4969
20 0.992 205.0 83

SO 0.50 I 0.94 11.2 3109
2 1.014 16.1 3773
5 1.150 29.8 5675

10 1.285 51.4 8636
20 1.444 92.1 14100

100 1.00 I 1.345 5.9 5615
2 1.447 8.0 6652
5 1.623 14.1 9578

10 1.781 23.6 14077
20 1.957 41.3 22288
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Fig. 6. Beam displacement (II/L = O.S).

settlements. Here. great caution has to be exercised in the interpretation of the results. In
general. evaluations of the deformation characteristics of a soil medium are indeed very
important in geotechnical engineering practice. especially when they can be achieved in a
design office using a personal computer.

Since the method is iterative. one may be concerned about the convergence of the "I
parameter. It is observed that convergence to a margin value of y is achieved for less than
seven iterations for uniformly distributed loads and less than 12 iterations for concentrated
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loads. A starting value equal to 1.0 is used here. [n the author's opinion, this model clarifies
a lot of inconsistencies prevailing in the use of modulus of subgrade reaction k in the widely
used Winkler model. The method presented here can be expanded to consider layered soils,
variations in depth of soil, etc.
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